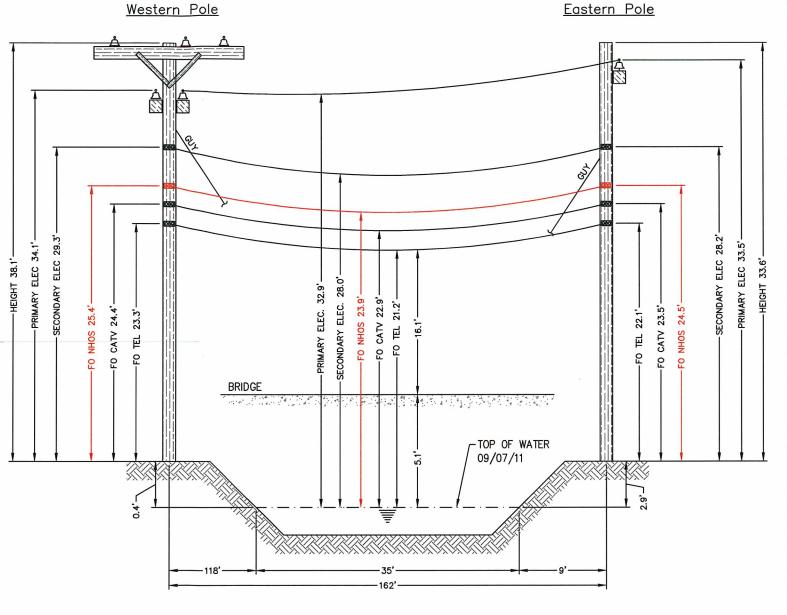







Spanmaster ® Release 3.1 Sag / Tension Computations


|                                       | X-SECT<br>AREA   | EFF<br>MODULUS       | NOMINAL<br>DIAM         | EFF.EXP.<br>COEFF.   | CABLE<br>WEIGHT            | E*A LOAD<br>BEARING<br>CAPACITY | MAX.<br>RATED<br>LOAD |
|---------------------------------------|------------------|----------------------|-------------------------|----------------------|----------------------------|---------------------------------|-----------------------|
| Selected Cables                       | (sq.in)          | (psi)                | (in)                    | (1/F)                | (lb/ft)                    | (lbs)                           | (lbs)                 |
| 1/4"6.6mEHS<br>ORF-O-288-LN<br>Bundle | 0.0352<br>0.5782 | 2.60E+07<br>2.70E+05 | 0.250<br>0.858<br>1.108 | 5.60E-06<br>1.13E-05 | 0.1210<br>0.1960<br>0.3170 | 155982                          | 6650<br>651           |

Waveguide River and Rail Crossings

## **NESC RESULTS**

| Loading<br>Condition      | Temp.<br>(F) | Load<br>lb/ft  | foe<br>Thick<br>in | Wind<br>Constant<br>Ib/ft | Wind<br>Load<br>lb/sq ft | Load<br>+ Const<br>#b/ft | Sag | Tension | Chg From<br>Input<br>Conditions | Point<br>81<br>ft | Sag<br>Comp<br>ft | Sag<br>Comp<br>ft | Vector<br>Angle<br>Deg |
|---------------------------|--------------|----------------|--------------------|---------------------------|--------------------------|--------------------------|-----|---------|---------------------------------|-------------------|-------------------|-------------------|------------------------|
| Rule 251 - Heavy<br>232A1 |              | 1.000<br>0.000 | .50<br>.00         | .3<br>.0                  | 4.0<br>0.0               | 1.793<br>0.317           |     |         | 0.08<br>0.01                    | 3.32<br>2.01      | 1.56<br>0.00      | 2.92<br>2.01      |                        |
|                           |              |                |                    |                           |                          | т.                       |     | Malana  | <b></b>                         | 0/ 1              |                   |                   |                        |

|                                    | Temp  | Midspan  | Tension | % Length | Clearance |
|------------------------------------|-------|----------|---------|----------|-----------|
| Span Length = 162.00 ft            | (F)   | Sag (ft) | (lb)    | Change   |           |
| Span Sag = 1.62 ft (19.4 in)       | -     |          |         | _        |           |
| Span Tension = 642 lb              | -40.0 | .99      | 1,051   | -0.02    | N/A       |
| Max Load = 6,650 lb                | -30.0 | 1.03     | 1,008   | -0.02    | N/A       |
| Usable load (60%) = 3,990 lb       | -20.0 | 1.08     | 965     | -0.01    | N/A       |
| Catenary Length = 162.043 ft       | -10.0 | 1.12     | 924     | -0.01    | N/A       |
| Stress Free Length @               | .0    | 1.17     | 884     | -0.01    | N/A       |
| Installed Temperature = 161.930 ft | 10.0  | 1.23     | 845     | -0.01    | N/A       |
|                                    | 20.0  | 1.29     | 807     | -0.01    | N/A       |
| Unloaded Strand                    | 30.0  | 1.35     | 771     | -0.01    | N/A       |
| Sag = .85 ft (10.2 in) 0.53 %      | 40.0  | 1.41     | 736     | -0.01    | N/A       |
| Tension = 466 lb                   | 50.0  | 1.48     | 703     | 0.00     | N/A       |
|                                    | 60.0  | 1.55     | 671     | 0.00     | N/A       |
|                                    | 70.0  | 1.62     | 641     | 0.00     | N/A       |
|                                    | 80.0  | 1.69     | 613     | 0.00     | N/A       |
|                                    | 90.0  | 1.77     | 587     | 0.01     | N/A       |
|                                    | 100.0 | 1.85     | 562     | 0.01     | N/A       |
|                                    | 110.0 | 1.93     | 539     | 0.01     | N/A       |
|                                    | 120.0 | 2.01     | 517     | 0.01     | N/A       |
|                                    | 130.0 | 2.09     | 497     | 0.02     | N/A       |
|                                    | 140 0 | 2 17     | 478     | 0.02     | N/A       |



E-383/246 - T-128/129 (Existing joint owned utility pole (Fairpoint/PSNH) in existing Right-of-Way)

Not to Scale

E-383/247 - T-128/130 (Existing joint owned utility pole (Fairpoint/PSNH) in existing Right-of-Way)

# 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

New Hampshire Optical Systems, Inc.

Project # TID-56 - PRI-4 Drawing #AC-SWA-RIV-1

Date: 10/25/11

Notes:

09/07/11

ranges from 5' to 7'.

moves are completed.

The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on

The horizontal distance between the nearest bridge edge and the existing overhead wires

Because of the close horizontal proximity to

the existing bridge structure, the simplified

drawing is submitted with vertical distances measured to the structure. This process

simplifies the preparation and review of the crossing without jeopardizing its intent to

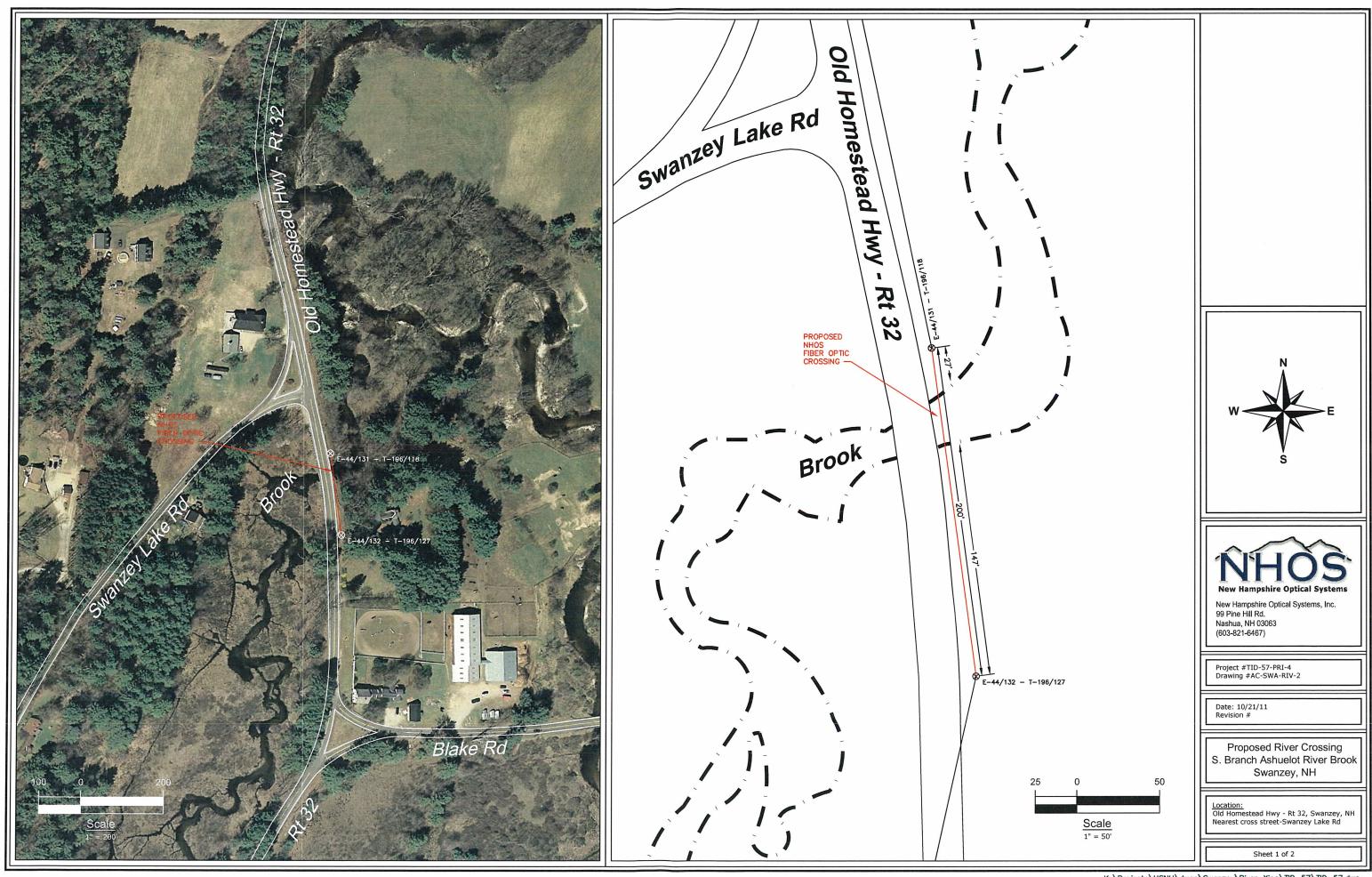
The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is 16.1'.

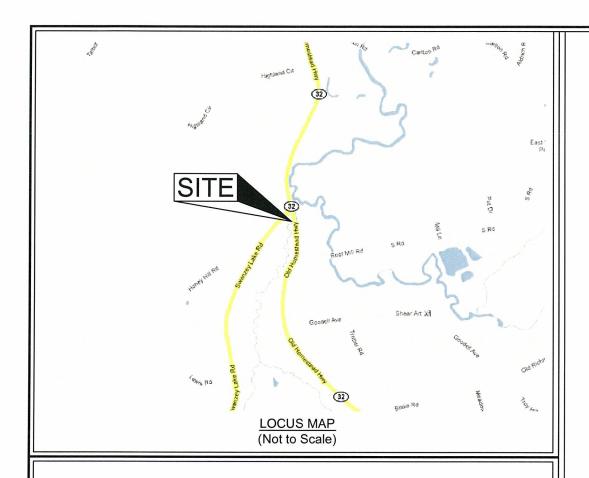
The vertical distance between the top of water and bridge deck is approximately 5.1'.

Vertical distances are representative of attachment heights after utility make ready

protect the safe usage of the waterway

**Proposed River Crossing** S. Branch Ashuelot River Brook Swanzey, NH


<u>Location:</u> Old Homestead Highway, Swanzey, NH learest cross street- Blake Rd.


Sheet 2 of 2



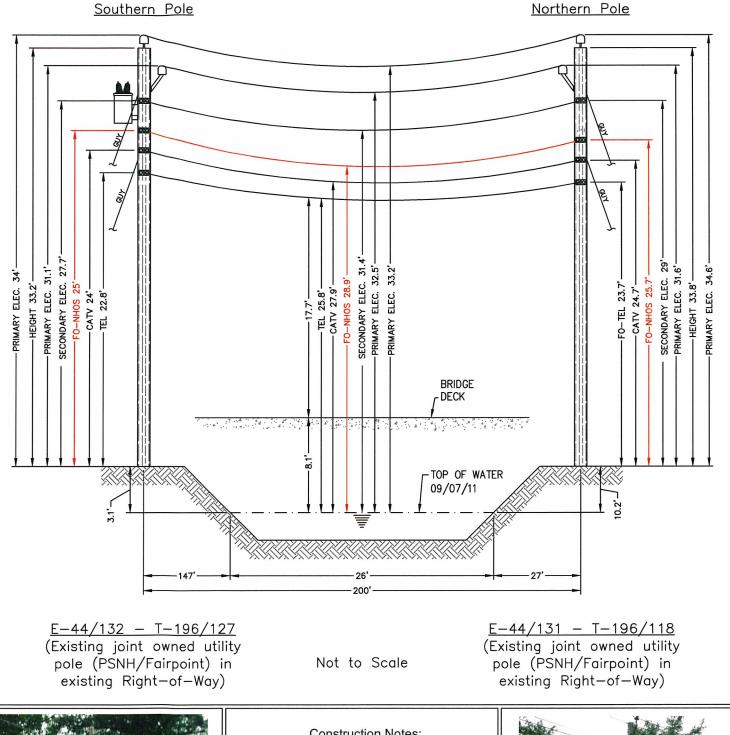
### Construction Notes:

NHOS proposes to install a % inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole








Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide

|                 | X-SECT<br>AREA | EFF<br>MODULUS | NOMINAL<br>DIAM | EFF.EXP. | CABLE<br>WEIGHT | E*A LOAD<br>BEARING<br>CAPACITY | MAX.<br>RATED<br>LOAD |
|-----------------|----------------|----------------|-----------------|----------|-----------------|---------------------------------|-----------------------|
| Selected Cables | (sq.in)        | (psi)          | (in)            | (1/F)    | (lb/ft)         | (lbs)                           | (lbs)                 |
| 1/4"6.6mEHS     | 0.0352         | 2.60E+07       | 0.250           | 5.60E-06 | 0.1210          | 914940                          | 6650                  |
| ORF-O-144-LN    | 0.4307         | 3.50E+05       | 0.741           | 1.09E-05 | 0.1520          | 150720                          | 640                   |
| Dundle          |                |                | 0.004           |          | 0.0700          |                                 |                       |

Waveguide River and Rail Crossings

| NESC  | RESULTS  |  |
|-------|----------|--|
| 14500 | ILLOGEIG |  |

| Loading<br>Condition                                | Temp.<br>(F)                                                                    | Load<br>lb/ft                                                         | Ice<br>Thick<br>in    | Wind<br>Constant<br>Ib/ft | Wind<br>Load<br>lb/sq ft | Load<br>+ Const<br>lb/ft | Sag<br>ft                                     | Tension<br>Ib                                                                                                                                                    | Chg From<br>Input<br>Conditions | Point<br>100<br>ft | Sag<br>Comp<br>ft                           | Sag<br>Comp<br>ft | Vector<br>Angle<br>Deg |
|-----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|---------------------------------------------|-------------------|------------------------|
| Rule 251 - Heavy                                    | 0.0                                                                             | 0.927                                                                 | .50                   | .3                        | 4.0                      | 1.671                    | 4.32                                          | 1932                                                                                                                                                             | 0.10                            | 4.33               | 2.09                                        | 3.78              | 28.9                   |
| 232A1                                               | 120.0                                                                           | 0.000                                                                 | .00                   | .0                        | 0.0                      | 0.273                    | 2.47                                          | 553                                                                                                                                                              | 0.01                            | 2.47               | 0.00                                        | 2.47              | 0.0                    |
| Span Length Span Sag = 2<br>Span Tension<br>Max Loa | = 200.0<br>.00 ft<br>= 683<br>ad = 6,<br>le load<br>gth = 2<br>ength (<br>emper | 00 ft<br>(24.0 ir<br>lb<br>650 lb<br>(60%)<br>200.053<br>@<br>ature = | n)<br>= 3,990<br>s ft | 0 lb<br>04 ft             |                          |                          | mp (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | Midspa<br>Sag (f<br>1.24<br>1.30<br>1.35<br>1.41<br>1.47<br>1.53<br>1.60<br>1.68<br>1.75<br>1.83<br>1.91<br>2.00<br>2.09<br>2.18<br>2.27<br>2.37<br>2.47<br>2.56 | an Tensio                       | n % Ler<br>Chan    | ngth (2221111111111111111111111111111111111 |                   | nce                    |
|                                                     |                                                                                 |                                                                       |                       |                           |                          |                          |                                               |                                                                                                                                                                  |                                 |                    |                                             |                   |                        |



### Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

E-44/132 - T-196/127



Location:
Old Homestead Hwy - Rt 32, Swanzey, NH Nearest cross street-Swanzey Lake Rd

Proposed River Crossing

S. Branch Ashuelot River Brook

Swanzey, NH

Sheet 2 of 2

Notes:

from 3.7' to 5.4'.

The heights of structures shown hereon are

based on field measurements taken with a Nikon 362 total station during a site survey on

The horizontal distance between the existing bridge and the existing overhead wires ranges

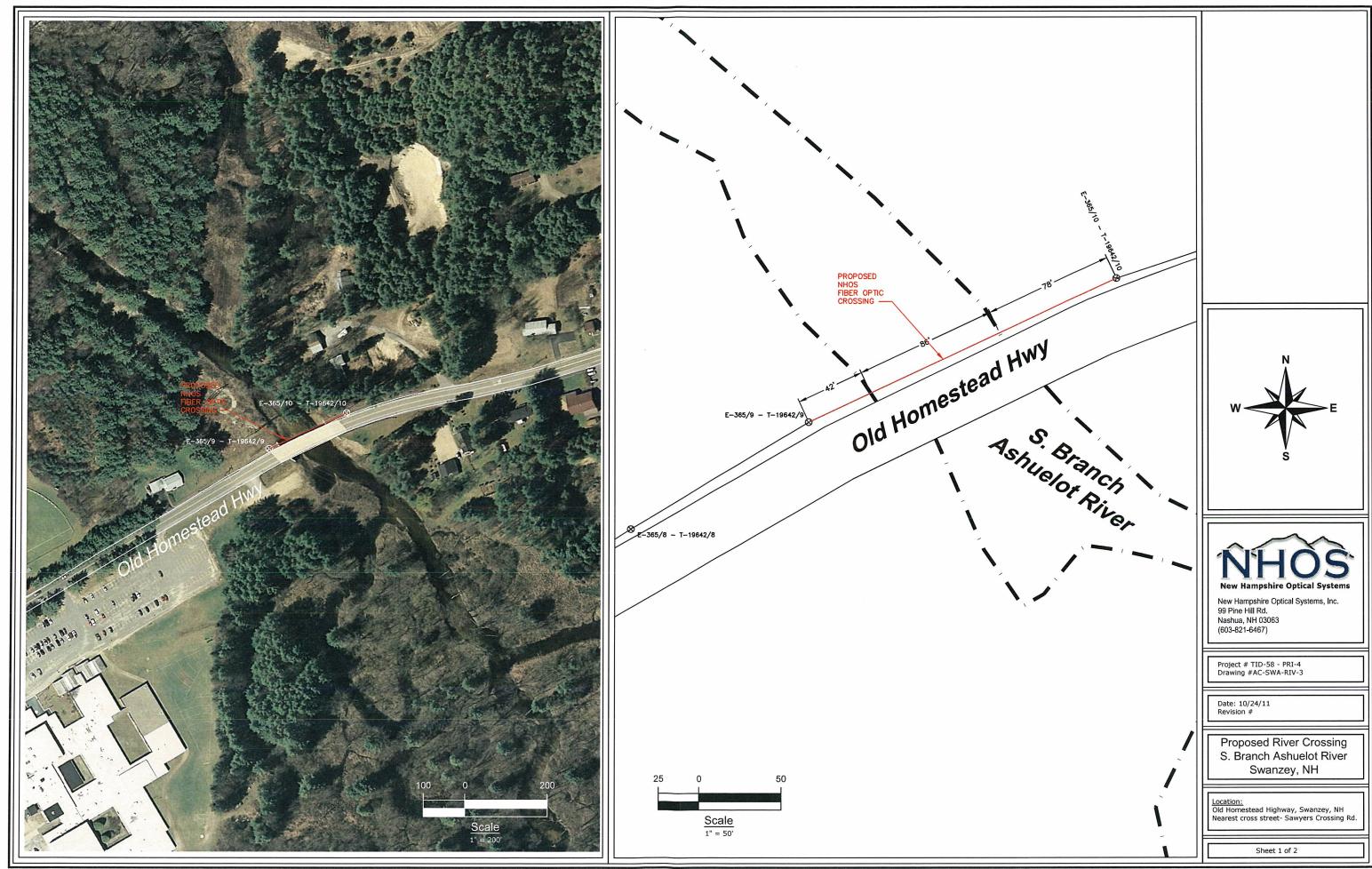
Because of the close horizontal proximity to the existing bridge structure, the simplified drawing is submitted with vertical distances

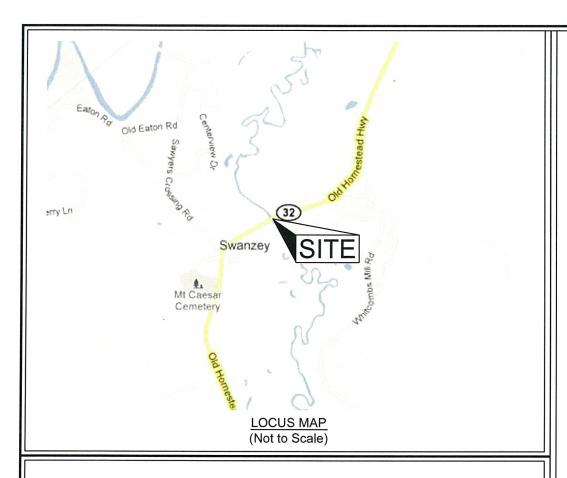
measured to the structure. This process simplifies the preparation and review of the

crossing without jeopardizing its intent to protect the safe usage of the waterway. The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is 17.7'. The vertical distance between the top of

water and bridge deck is approximately 8.1'.

Vertical distances are representative of attachment heights after utility make ready


New Hampshire Optical Systems, Inc.


99 Pine Hill Rd.

Date: 10/21/11

Nashua, NH 03063 (603-821-6467)

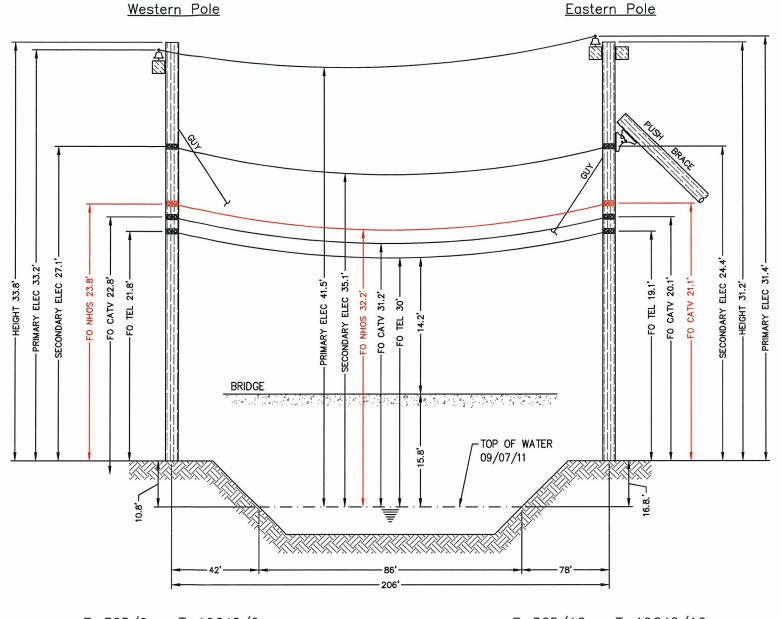
Project #TID-57-PRI-4 Drawing #AC-SWA-RIV-2







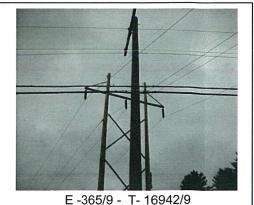
Spanmaster ® Release 3.1 Sag / Tension Computations 09/01/11 Waveguide


Waveguide River and Rail Crossings

|                 |         |          |         |          |         | E*A LOAD | MAX.  |
|-----------------|---------|----------|---------|----------|---------|----------|-------|
|                 | X-SECT  | EFF      | NOMINAL | EFF.EXP. | CABLE   | BEARING  | RATED |
|                 | AREA    | MODULUS  | DIAM    | COEFF.   | WEIGHT  | CAPACITY | LOAD  |
| Selected Cables | (sq.in) | (psi)    | (in)    | (1/F)    | (lb/ft) | (lbs)    | (lbs) |
| 1/4"6.6mEHS     | 0.0352  | 2.60E+07 | 0.250   | 5.60E-06 | 0.1210  | 914940   | 6650  |
| ORF-O-288-LN    | 0.5782  | 2.70E+05 | 0.858   | 1.13E-05 | 0.1960  | 155982   | 65    |
| Bundle          |         |          | 1.108   |          | 0.3170  |          |       |

### **NESC RESULTS**

| Loading<br>Condition      | Temp. | Load<br>Ib/ft  | Ice<br>Thick<br>in | Wind<br>Constant<br>lb/ft | Wind<br>Load<br>lb/sq ft | + Const<br> b/ft | Sag | Tension | Chg From<br>Input<br>Conditions | Point<br>103<br>ft | Sag<br>Comp<br>ft | Sag<br>Comp<br>ft | Vector<br>Angle<br>Dea |
|---------------------------|-------|----------------|--------------------|---------------------------|--------------------------|------------------|-----|---------|---------------------------------|--------------------|-------------------|-------------------|------------------------|
| Rule 251 - Heavy<br>232A1 |       | 1.000<br>0.000 | .50<br>.00         | .3<br>.0                  | 4.0<br>0.0               | 1.793<br>0.317   |     |         | 0.10<br>0.01                    | 4.53<br>2.50       | 2.13<br>0.00      |                   | 28.1                   |
|                           |       |                |                    |                           |                          | Ter              | mp  | Midspa  | an Tensio                       | on % Le            | ength C           | leara             | nce                    |


|     |                                    | remp  | miaspan  | rension | % Length | Clearance |
|-----|------------------------------------|-------|----------|---------|----------|-----------|
|     | Span Length = 206.00 ft            | (F)   | Sag (ft) | (lb)    | Change   |           |
|     | Span Sag = 2.06 ft (24.7 in)       | ( ,   | 3 (/     | ()      |          |           |
|     | Span Tension = 816 lb              | -40.0 | 1.35     | 1,239   | -0.02    | N/A       |
|     | Max Load = 6,650 lb                | -30.0 | 1.40     | 1,196   | -0.01    | N/A       |
|     |                                    |       |          |         |          |           |
|     | Usable load (60%) = 3,990 lb       | -20.0 | 1.46     | 1,153   | -0.01    | N/A       |
|     | Catenary Length = 206.055 ft       | -10.0 | 1.51     | 1,111   | -0.01    | N/A       |
|     | Stress Free Length @               | .0    | 1.57     | 1,070   | -0.01    | N/A       |
|     | Installed Temperature = 205.871 ft | 10.0  | 1.63     | 1.031   | -0.01    | N/A       |
|     |                                    | 20.0  | 1.69     | 992     | -0.01    | N/A       |
| - 1 | Jnloaded Strand                    | 30.0  | 1.76     | 954     | -0.01    | N/A       |
|     | Sag = 1.02 ft (12.2 in) 0.49 %     | 40.0  | 1.83     | 917     | -0.01    | N/A       |
|     | Tension = 632 lb                   | 50.0  | 1.90     | 882     | 0.00     | N/A       |
|     | 101101011                          |       |          |         |          |           |
|     |                                    | 60.0  | 1.98     | 848     | 0.00     | N/A       |
|     |                                    | 70.0  | 2.06     | 815     | 0.00     | N/A       |
|     |                                    | 80.0  | 2.14     | 784     | 0.00     | N/A       |
|     |                                    | 90.0  | 2.23     | 754     | 0.00     | N/A       |
|     |                                    | 100.0 | 2.31     | 726     | 0.01     | N/A       |
|     |                                    |       |          |         |          |           |
|     |                                    | 110.0 | 2.40     | 699     | 0.01     | N/A       |
|     |                                    | 120.0 | 2.50     | 673     | 0.01     | N/A       |
|     |                                    | 130.0 | 2.59     | 649     | 0.02     | N/A       |
|     |                                    | 140.0 | 2.68     | 627     | 0.02     | N/A       |
|     |                                    |       |          |         |          |           |



E-365/9 - T-19642/9 (Existing joint owned utility pole (Fairpoint/PSNH) in existing Right-of-Way)

Not to Scale

E-365/10 - T-19642/10 (Existing joint owned utility pole (Fairpoint/PSNH) in existing Right-of-Way)



### Construction Notes:

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities. (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole

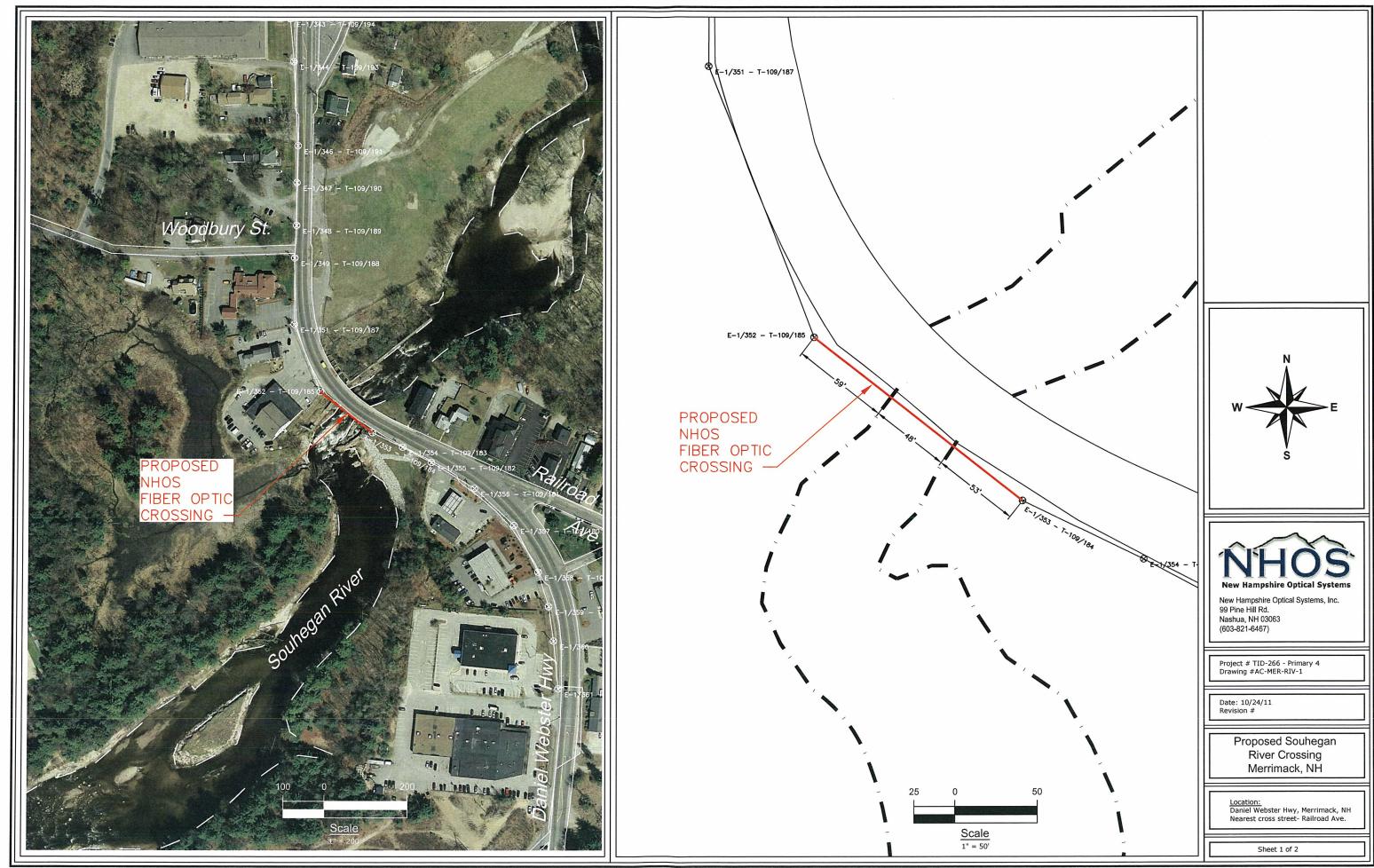


E-365/10 - T-19642/10

- 1. The heights of structures shown hereon are based on field measurements taken with a Nikon 362 total station during a site survey on
- The horizontal distance between the nearest bridge edge and the existing overhead wires is approximately 7'.
- Because of the close horizontal proximity to the existing bridge structure, the simplified drawing is submitted with vertical distances measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway
- The smallest vertical distance from the top of existing bridge deck to the lowest existing overhead wires is 14.2'.
- The vertical distance between the top of water and bridge deck is approximately 15.8'.
- Vertical distances are representative of attachment heights after utility make ready



New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)


Project # TID-58 - PRI-4 Drawing #AC-SWA-RIV-3

Date: 10/24/11

**Proposed River Crossing** S. Branch Ashuelot River Swanzey, NH

<u>Location:</u> Old Homestead Highway, Swanzey, NH Nearest cross street- Sawyers Crossing Rd.

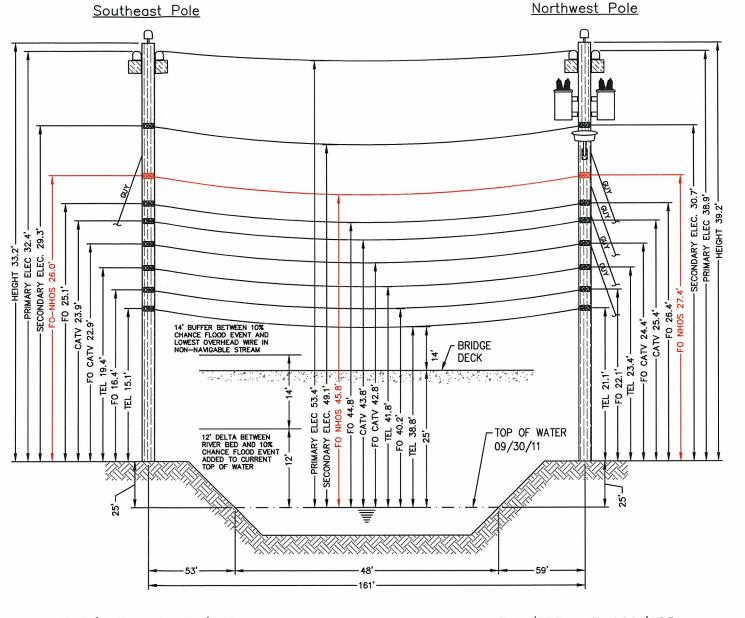
Sheet 2 of 2







Spanmaster ® Release 3.1 Sag / Tension Computations


River and Rail Crossings

|                 | X-SECT<br>AREA | EFF<br>MODULUS | NOMINAL<br>DIAM | EFF.EXP. | CABLE   | E*A LOAD<br>BEARING<br>CAPACITY | MAX.<br>RATED<br>LOAD |
|-----------------|----------------|----------------|-----------------|----------|---------|---------------------------------|-----------------------|
| Selected Cables | (sq.in)        | (psi)          | (in)            | (1/F)    | (lb/ft) | (lbs)                           | (lbs)                 |
| Selected Cables | (54.111)       | (bai)          | (111)           | (1/17)   | (ID/IL) | (ibs)                           | (IDS)                 |
| 1/4"6.6mEHS     | 0.0352         | 2.60E+07       | 0.250           | 5.60E-06 | 0.1210  | 914940                          | 6650                  |
| ORF-O-288-LN    | 0.5782         | 2.70E+05       | 0.858           | 1.13E-05 | 0.1960  | 155982                          | 651                   |
| Bundle          |                |                | 1 108           |          | 0.3170  |                                 |                       |

### **NESC RESULTS**

| Loading<br>Condition | Temp.<br>(F) | ice<br>Load<br>lb/ft | Ice<br>Thick<br>in | Wind<br>Constant<br>Ib/ft | Wind<br>Lead<br>lb/sq ft | Result<br>Load<br>+ Const<br>lb/ft | Sag<br>ft | Tension<br>lb | % Len<br>Chg From<br>Input<br>Conditions | Sag @<br>Point<br>80.5<br>ft | Horz<br>Sag<br>Comp<br>ft | Vert<br>Sag<br>Comp<br>ft | Vector<br>Angle<br>Deg |  |
|----------------------|--------------|----------------------|--------------------|---------------------------|--------------------------|------------------------------------|-----------|---------------|------------------------------------------|------------------------------|---------------------------|---------------------------|------------------------|--|
| Rule 251 - Heavy     | 0.0          | 1.000                | .50                | .3                        | 4.0                      | 1.793                              | 3.28      | 1766          | 0.08                                     | 3.29                         | 1.55                      | 2.90                      | 28.1                   |  |
| 232A1                | 120.0        | 0.000                | .00                | .0                        | 0.0                      | 0.317                              | 2.00      | 514           | 0.01                                     | 2.00                         | 0.00                      | 2.00                      | 0.0                    |  |

|                                    | remp  | Miluspair | rension | 70 Lengui | Clearance |
|------------------------------------|-------|-----------|---------|-----------|-----------|
| Span Length = 161.00 ft            | (F)   | Sag (ft)  | (lb)    | Change    |           |
| Span Sag = 1.61 ft (19.3 in)       | ٧٠/   | 3 (7      | ()      |           |           |
| Span Tension = 638 lb              | -40.0 | .98       | 1.046   | -0.02     | N/A       |
|                                    | -30.0 |           |         |           |           |
| Max Load = 6,650 lb                |       | 1.02      | 1,003   | -0.02     | N/A       |
| Usable load (60%) = 3,990 lb       | -20.0 | 1.07      | 961     | -0.01     | N/A       |
| Catenary Length = 161.043 ft       | -10.0 | 1.11      | 920     | -0.01     | N/A       |
| Stress Free Length @               | .0    | 1.17      | 879     | -0.01     | N/A       |
| Installed Temperature = 160.931 ft | 10.0  | 1.22      | 840     | -0.01     | N/A       |
|                                    | 20.0  | 1.28      | 803     | -0.01     | N/A       |
| Unloaded Strand                    | 30.0  | 1.34      | 767     | -0.01     | N/A       |
| Sag = .85 ft (10.2 in) 0.53 %      | 40.0  | 1.40      | 732     | -0.01     | N/A       |
| Tension = 462 lb                   | 50.0  | 1.47      | 699     | 0.00      | N/A       |
|                                    | 60.0  | 1.54      | 667     | 0.00      | N/A       |
|                                    | 70.0  | 1.61      | 637     | 0.00      | N/A       |
|                                    | 80.0  | 1.68      | 609     | 0.00      | N/A       |
|                                    | 90.0  | 1.76      | 583     | 0.01      | N/A       |
|                                    | 100.0 | 1.84      | 558     | 0.01      | N/A       |
|                                    | 110.0 | 1.92      | 535     | 0.01      | N/A       |
|                                    | 120.0 | 2.00      | 514     | 0.01      | N/A       |
|                                    |       |           |         |           |           |
|                                    | 130.0 | 2.08      | 494     | 0.02      | N/A       |
|                                    | 140.0 | 2.16      | 475     | 0.02      | N/A       |
|                                    |       |           |         |           |           |



E-1/353 - T-109/184(Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)

Not to Scale

E-1/352 - T-109/185(Existing joint owned utility pole (PSNH/Fairpoint) in existing Right-of-Way)



New Hampshire Optical Systems, Inc. 99 Pine Hill Rd. Nashua, NH 03063 (603-821-6467)

Project # TID-266 - Primary 4 Drawing #AC-MER-RIV-1

Date: 10/24/11 Revision #

Notes:

09/30/11.

1. The heights of structures shown hereon are based on field measurements taken with a

2. The horizontal distance between the nearest

bridge edge and the existing overhead wires ranges from 3' to 5'.

Because of the close horizontal proximity to

the existing bridge structure, the simplified drawing is submitted with vertical distances

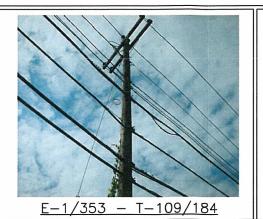
measured to the structure. This process simplifies the preparation and review of the crossing without jeopardizing its intent to protect the safe usage of the waterway

4. The smallest vertical distance from the top of existing bridge deck to the lowest existing

5. The vertical distance between the top of

water and bridge deck is approximately 25'.

Vertical distances are representative of attachment heights after utility make ready


overhead wires is 14'.

Nikon 362 total station during a site survey on

Proposed Souhegan River Crossing Merrimack, NH

<u>Location:</u>
Daniel Webster Hwy, Merrimack, NH Nearest cross street- Railroad Ave.

Sheet 2 of 2



### **Construction Notes:**

NHOS proposes to install a ¼ inch metal supporting strand between the existing utility poles shown above that will traverse the river. The strand will be installed at the proposed height (see above). The supporting strand will be secured to each pole using double dead end attachments to prevent any sag in the wire and maintain proper clearances. NHOS will lash a one inch diameter fiber optic cable (PVC jacket) to the strand using a dual lash method to provide security of the fiber over the right of way. The fiber will be tagged with twenty four hour contact information at each pole clamp. NHOS will employ the proper safety personnel during the crossing installation. The proposed install will meet all proper clearances from other Utilities, (see above). Additional pole guys will be added per NESC Rule 264 and as directed by pole